Tag Archives: forex trading

Mises U: “A Week Unlike Any Other”

During Mises University this week, we will be sharing short interviews with some of this year’s students.

Zachary Yost is a graduate student at Catholic University and a a Free Society Fellow with Young Voices.

What brings you to Mises U?

Mises U is a week unlike any other. It is the best place to learn from and engage with the top minds in the Austro-libertarian tradition and to network with like-minded peers at similar levels of their intellectual journey. 

Who are you most looking forward to seeing this week?

There a lot of faculty I am looking forward to seeing, but I am most excited to see Guido Hulsmann lecture on the economics of fractional reserve banking. 

How does Mises U benefit you?

I am immensely fortunate to be attending Mises U for the second time. Last year my experience led me to apply to grad school, which I will be starting this fall. On a more direct level, Mises U has been invaluable in establishing a solid foundation in economic and social principles that are not often included in my discipline of political theory, but are necessary for any true understanding of the social sciences.

Help us continue the Austrian revolution. Donate today to Mises University. 

Forex stock trading

Mises U: “The Highlight of My Summer”

During Mises University this week, we will be sharing short interviews with some of this year’s students.

Felicia Cowley is a first time Mises Research Fellow and a PhD candidate at George Mason University. She received her bachelors degree in economics at Troy University, where her professors included Mises Institute Associated Scholars G.P. Manish and Malavika Nair. 

Why did you come to Mises University?

The first time I came to Mises University was because my undergraduate professor told me about it. Because I love going after new opportunities, I went discovering it was the highlight of my summer! I met so many wonderful and knowledgeable people who love economics and liberty as much as I do. This year, I just couldn’t wait to come back

What made you interested in Austrian economics?

I first learned about Austrian economics in my undergraduate classes taught by my fantastic professors. Since then, my understanding has grown deeper by attending seminars and workshops like Mises University taught by faculty who are experts in the field.

How does Mises U help you now as a PhD candidate?

Mises University enables me to continue growing in my studies in economics through its sessions and opportunities to learn directly from faculty who have come from a variety of colleges and universities. I am able to build my professional network of other students and professors which is helpful as I am entering academia.

Help us continue the Austrian revolution. Donate today to Mises University. 

Forex stock trading

The world’s weird self-organizing economy

Why is it so difficult to make accurate long-term economic forecasts for the world economy? There are many separate countries involved, each with a self-organizing economy made up of businesses, consumers, governments, and laws. These individual economies together create a single world economy, which again is self-organizing.

Self-organizing economies don’t work in a convenient linear pattern–in other words, in a way that makes it possible to make valid straight line predictions from the past. Instead, they work in ways that don’t match up well with standard projection techniques.

How do we forecast what lies ahead? Today, some economists believe that the economy of the United States is in danger of overheating. Others believe that Italy and the United Kingdom are facing dire problems, and that these problems could adversely affect the world economy. The world economy should be our highest concern because each country is dependent on a combination of imported and exported goods. The forecasting question becomes, “How will divergent economic results affect the world’s economy?”

I am not an economist; I am a retired actuary. I have spent years making forecasts within the insurance industry. These forecasts were financial in nature, so I have had hands-on experience with how various parts of the financial system work. I was one of the people who correctly forecast the Great Recession. I also wrote the frequently cited academic article, Oil Supply Limits and the Continuing Financial Crisis, which points out the connection between the Great Recession and oil limits.

Today’s indications seem to suggest that an even more major recession than the Great Recession may strike in the not too distant future. Why should this be the case? Am I imagining problems where none exist?

The next ten sections provide an introduction to how the world’s self-organizing economy seems to operate.

[1] The economy is one of many self-organized systems that grow. All are governed by the laws of physics. All use energy in their operation.

There are many other self-organizing systems that grow. One such system is the sun. Some forecasts indicate that it will keep expanding in size and brightness for about the next five billion years. Eventually, it is expected to collapse under its own weight.

Hurricanes are a type of self-organizing system that grows. Hurricanes grow over warm ocean waters. If they travel over land for a short time, they can sometimes shrink back a bit and grow again once they have an adequate source of heat-energy from warm water. Eventually, they collapse.

Plants and animals also represent self-organizing systems that grow. Some plants grow throughout their lifetimes; others stabilize in size after reaching maturity. Animals continue to require food (a form of energy) even after they stabilize at their mature size.

We can’t use the typical patterns of these other growing self-organized systems to conclude much about the future path of the world’s economic growth because individual patterns are quite different. However, we notice that cutting off the energy supply used by any of these systems (for example, moving a hurricane permanently over land or starving a human) will lead to the demise of that system.

We also know that lack of food is not the only reason why humans die. Based on this observation, it is a reasonable conclusion that having enough energy available is not a sufficient condition to guarantee that the world economy will continue to operate as in the past. For example, a blocked shipping channel, such as at the Strait of Hormuz, could pose a significant problem for the world economy. This would be analogous to a blocked artery in a human.

[2] The use of energy products is hidden deeply within the economy. As a result, many people overlook their significance. They are also difficult for researchers to measure. 

It is easy to see that gasoline provides the energy supply needed for our cars, and that electricity provides the power needed to clean our clothes. What is missing? The answer seems to be, “Everything that makes humans different from wild animals is something that was made possible by the use of supplemental energy in addition to the energy from food.”

All goods and services require the use of energy. While some of this energy use is easy to see, other portions are well hidden. Energy used in manufacturing and transport is most visible; energy used in services tends to be hidden.

Governments are major users of energy, both for their own programs and for directing energy use to others. Retirees get the benefit of goods and services made with energy products through pension checks issued by governments; researchers get the benefit of goods and services made with energy products through research grants they receive. Wars require energy.

Medical treatments are possible because of the availability of medicines and equipment made with energy products. Schools and books, as well as free time to study in schools (rather than working in the field), are possible because of energy consumption. Jobs of all kinds require the use of energy.

One thing we don’t often consider is that if energy supplies are growing sufficiently, they permit an expanding population. In fact, expanding population seems to be the single largest use of growth in energy consumption (Figure 1). Growing energy consumption also seems to be associated with prosperity.

Figure 1. World energy consumption growth for ten-year periods (ended at dates shown) divided between population growth (based on Angus Maddison estimates) and total energy consumption growth, based on the author’s review of BP Statistical Review of World Energy 2011 data and estimates from Energy Transitions: History, Requirements and Prospects by Vaclav Smil.

[3] Prices of energy services need to be low relative to overall costs of the economy. Falling energy costs relative to overall GDP tend to encourage economic growth.

Most economists expect energy prices to represent a large share of GDP costs, if energy is truly important. The statement above says the opposite. There are at least two reasons why low energy prices, and energy prices that are truly falling when inflation and productivity changes are considered, are helpful.

First, tools (broadly defined) used to leverage the labor of human workers often require considerable energy to manufacture and operate. Examples of such tools include computers, machines used in manufacturing, vehicles, and roads for these vehicles to drive on. The lower the cost to purchase and operate these tools, relative to the benefit of the tools, the more likely employers are to purchase them. If energy costs tend to fall over time, it becomes progressively easier to add more tools to leverage the labor of employees. Thus, employees become increasingly productive over time, raising the economy’s output of goods and services. For a similar reason, rising energy costs, if not offset by efficiency gains, present a barrier to economic growth.

Second, if the cost of energy production is low, it is easy to tax energy producers and thereby capture some of the benefit of their energy for the rest of the economy. If there is truly a “net energy” benefit to the economy, this is one way it gets transferred to the rest of the economy.

[4] There is indeed an energy problem, but it is not quite the same one that Peak Oilers have been concerned about.

The energy problem that Peak Oilers write about is the possibility that as easy-to-extract oil supplies deplete, oil production will reach a peak in production and begin to decline. Once decline sets in, they expect that oil prices will rise, partly because of the higher cost of production and partly because of scarcity. With these higher prices, they expect that producers will be able to extract at least a portion of the remaining oil resources. They also expect that higher prices will allow portions of the remaining natural gas and coal resources to be extracted. With higher prices, expanded use of renewable energy is expected to become feasible. All of these energy sources are expected to keep the economy operating at some level.

There are several problems with this story. First, it tends to encourage people to look for high oil prices as a sign of an oil shortage. This is not the correct indication to look for. Prior to 1970, oil prices averaged less than $20 per barrel. Comparing pre-1970 prices to today’s oil prices, current prices are already very high, at $75 per barrel. The idea that oil prices can keep rising indefinitely assumes that there is no affordability limit. Furthermore, a loss of energy consumption can be expected to reduce demand (because of its impact on jobs, productivity, and wages) at the same time that it reduces supply. If both supply and demand are affected, we don’t know which way prices will move.

Second, my analysis suggests that part of the story is that total energy consumption is very important, including oil, coal, natural gas, nuclear, and various forms of electricity. All of the attention given to oil has drawn attention away from the economy’s need for a range of energy types to keep devices of all types operating. Deciding to reduce coal usage because of pollution issues, or deciding to shut down nuclear because it is aging, has an equally adverse impact on the economy as reducing oil supply, unless the shortfall can be made up with other energy products of precisely the type needed by current devices.

Third, my analysis suggests that energy consumption per capita needs to rise for the economy to function in the way that we expect it to function. If world energy consumption per capita is too flat, we can expect to see many of the symptoms that the world has been experiencing recently: more radical leaders, less cooperation among leaders, slowing economic growth and increasing debt problems. In fact, wars are possible, as are collapses of governments (as with the Soviet Union central government in 1991). The current situation seems to be more parallel to the 1920 to 1940 flat period than it does to the 1980 to 2000 flat period.

Finally, with low energy prices rather than high quite possibly being much of the problem, there is a significant chance that oil and other production will decline because producers do not make enough profit for reinvestment and because oil exporting countries cannot collect enough taxes to fund the many subsidies that citizens expect. This makes for a steeper energy decline than forecast by Peak Oilers; it also reduces the possibility that high-priced renewables will be helpful.

[5] Part of the world’s energy problem is a distribution problem; the world becomes divided into haves and have-nots in many ways. It is this distribution problem that tends to push the world economy toward collapse. 

There are many parts to this distribution problem. One is the distribution of goods and services (created using energy) by country. Over time, this tends to change, especially as commodity prices change. Oil exporters are favored when oil prices are high; oil importers are favored when oil prices are low. The relative values of currencies can change quickly, as commodity prices change.

Another part of this distribution problem is growing wage and wealth disparity, as more technology is added. If there is too much wage disparity, low-paid workers often cannot afford adequate food, homes, and transportation for their families. Their lack of demand for goods made with energy products (because of their low wages) tends to work through the system as low commodity prices. This happens because (a) there are so many of these workers and (b) these workers tend to purchase a disproportionate share of goods and services that are highly energy-dependent.

[6] Debt-like promises play a major role in making the economy operate.

Taking out a loan allows an individual or business to purchase goods without saving for the purchase in advance. To some extent, taking out a loan moves up the timing of purchases. At times, it even permits purchases that otherwise would not be possible. For example, if a young person tries to decide between (a) working at a low wage until he has saved up enough to afford to go to college and (b) taking out a loan and going to school now, so his wages would be higher in future years, his optimal choice will often be scenario (b). The time would likely never come when the low-paid individual could save up enough wages to afford to go to college. If the young person strongly desires high wages, his optimal strategy would be to take the loan and hope that his future wages will be high enough to repay it.

If the goal of the economy is to produce an ever-increasing amount of goods and services, growing debt can very much help this growth. This happens because with more debt, more individuals and businesses can afford* to buy the goods and services that they want now. In a sense, debt acts like a promise of the future energy needed to make future goods and services with which the loan can be repaid. Thus, adding debt acts a somewhat like adding energy to the economy.

Because of the way debt works, the economy behaves much like a bicycle, with growing debt pulling the system forward. If the economy is growing too slowly, the tendency is to add more debt. This solution works if a rapidly growing supply of cheap-to-produce energy is available; the additional debt can be used to create a growing supply of affordable goods and services. If energy costs are high, the goods and services produced tend to be unaffordable.

Figure 2. The author’s view of the analogy of a speeding upright bicycle and a speeding economy.

A bicycle needs to operate at a fast enough speed (about 7.5 feet per second), or it will fall over. Similarly, the world economy needs to grow fast enough, or it will not be able to meet its obligations, including repayment of debt with interest. If the economy grows too slowly, debt defaults are likely to grow, pulling the economy down.

[7] It looks like it should be possible to work around energy problems with improved technology, but experience suggests that this approach represents only a temporary “fix.”

There are two issues that make improved technology less of a solution than it appears to be. The first is diminishing returns. For example, if a business faces a choice between (a) paying a worker to perform a process and (b) adding a machine to that can perform the same process, the business will tend to make the changes that seem to provide the largest cost savings first. At some point, as more technology is added, capital costs can be expected to become excessive relative to the human labor that might be saved. The issue of the diminishing returns to added complexity (which includes growing technology) was pointed out by Joseph Tainter in The Collapse of Complex Societies.

The second reason why added technology tends to be only a temporary solution is because it tends to lead to wage disparity. Wage disparity has a tendency to grow because of the greater specialization and larger organizations needed to coordinate the ever-larger projects. The reduced purchasing power of those at the bottom of the hierarchy can eventually bring an economy down because it can lead to commodity prices that are below the level needed to maintain the extraction of fossil fuels. Fossil fuels are required to maintain today’s economy.

[8] Renewable energy has been vastly oversold as a solution. What is needed is an ever-increasing quantity of inexpensive energy in forms that match the energy needs of current devices. 

The wind and solar story is far different from the story presented in the press. Essentially, wind and solar are extensions of today’s fossil fuel system. The evidence that they are truly beneficial to the economy is shaky at best. We know that if energy sources are truly transferring significant “net energy” to the system, they generally can afford to pay high taxes. The fact that wind and solar require subsidies raises questions regarding whether standard calculations are providing accurate guidance. The press rarely mentions the high tax revenue that high oil prices make possible, worldwide. Tax revenues largely support many oil exporting countries.

Furthermore, the share of the world’s energy supply that wind and solar provide is very low: 1.9% and 0.7%, respectively. They are shown in the almost invisible blue and orange lines at the very top of Figure 3. Fossil fuels contributed 85% of total energy supply in 2017.

Figure 3. World energy consumption divided between fossil fuels and non-fossil fuel energy sources, based on data from BP Statistical Review of World Energy 2018.

[9] The world economy becomes very fragile as energy limits approach.

Energy limits seem to be affordable energy limits. Oil prices need to be high enough for exporting countries to obtain adequate tax revenue. In addition, oil producers need prices that are high enough so that they can make the necessary reinvestment, as fields deplete. At the same time, energy prices need to be low enough for consumers to afford goods and services made with energy products.

Much of developed world’s infrastructure was built when oil prices were less than $20 per barrel, in inflation-adjusted terms. A rising price of oil will lead to a higher cost of replacing roads and pipelines. If these were built using $20 per barrel oil, even a current price of $40 per barrel would represent a significant cost increase. The world has experienced high oil prices for sufficiently long that we have collectively forgotten how low oil prices were between 1900 and 1970.

Most people know that the earth holds a huge quantity of energy resources. The problem is extracting these resources in a way that is both affordable to consumers and sufficiently high-priced for producers. Falling long-term interest rates between 1981 and 2002 allowed the world economy to tolerate somewhat higher oil and other energy prices than it otherwise could because these falling interest rates permitted ever-lower monthly payments for a given loan amount. For example, if interest rates on a $300,000 mortgage would fall from 5% to 4% on a 25-year mortgage, monthly payments would decrease from $1,753 to $1,584. The lower interest rates would allow more people to buy homes with a given size of mortgage. Indirectly, the lower mortgage rates would permit additional new homes to be built and would allow more inflation in home prices. These benefits would at least partially offset the adverse impact of high energy prices.

Since the natural decline in long term interest rates stopped in 2002, the world economy has become increasingly fragile; the Great Recession took place in 2007-2009, when oil prices spiked and long-term interest rates were already low by historical standards. It was only when United States’ program of quantitative easing (QE) was put in place that long-term interest rates could fall to even lower levels, helping the economy hide the problem of high energy prices a little longer.

The artificially low interest rates made possible by QE have problems of their own. They tend to inflate asset prices, including both real estate prices and stock market prices. Thus, they tend to create bubbles, which are prone to collapse if interest rates rise. Artificially low interest rates also tend to encourage investment in schemes with very low profit potential. Artificially low interest rates also encourage cross-border investments to try to take advantage of interest rate differences. If interest rate relativities change, the money that quickly would enter a county can almost as quickly leave the country, causing major fluctuations in currency relativities.

Regulators do not understand the role that physics plays in making the economy operate as it does. They assume that they, alone, have the power to make the economy behave as does. They do not understand how important falling interest rates are in creating growing demand for goods and services. The economy, since 1981, has spent most of its time with falling interest rates; the most recent part of this decline in long-term interest rates has been made possible by QE. These falling interest rates have played a major role in disguising the world’s long-term problem of rising energy costs. These rising energy costs are taking place primarily because the cheapest-to-extract resources were produced first; the resources that are left are have higher costs associated with them, for a variety of reasons, such as being farther away from the user, deeper, or needing more advanced extraction techniques. These issues have not been sufficiently offset by improved technology to keep extraction costs low.

US regulators now want to raise interest rates by raising short term interest rates and by selling QE securities. They don’t understand that they are playing with fire. They feel that they will have more power if they can raise interest rates now, they will have the flexibility to lower them later if the economy should later slow excessively. They don’t understand how much of the world’s economy may really be a bubble, created by the decline in interest rates since 1981.

[10] The adverse economic outcome we should be concerned about is collapse, as encountered by prior civilizations when their economies hit limits. 

The stories in the press have been so focused on oil “running out” and finding alternatives to oil that few have stopped to ask whether this is really the correct story. Instead of creating a new story, it might have been better to look more closely at history. Based on the historical record, collapse seems to have be associated with situations where populations have outgrown their resource bases. In other words, collapse can be considered an energy consumption per capita problem. The oil problem (and other fuel problem) we are facing today can be viewed as an energy consumption per capita problem, as well.

We know from research that has been done by Peter Turchin, Joseph Tainter, and others how collapse has played out in the past. The situation is different this time, however, because the world economy is very interconnected. Oil consumption depends on electricity consumption, and vice versa. Our financial system is also extraordinarily important. For these reasons, a collapse may occur more quickly than in the past.

Differences Between My View and the Standard View

One of the big differences between the way I see the economy and the standard view of the economy is the answer to the question of “Who is in charge?” The standard view is that politicians and economists are in charge. They have all of the answers. The dire collapse outcomes that afflicted early civilizations could not possibly affect us. We are too smart. We know how to adjust interest rates correctly. We can even make QE available to lower long-term interest rates. We can also add more technology and other complexity than has ever been added in the past.

The answer I see to the question, “Who is in charge?” is, “The laws of physics are in charge.” Politicians play a fairly minor role in directing the fate of economies. If there is not enough energy available of the type needed (inexpensive and matching the current infrastructure), the economy may very well collapse. It is nature and the laws of physics that call most of the shots.

Another big difference between my view and the standard view is the observation that a decrease in oil supply (or total energy supply) affects both the supply and demand of energy. Because both supply and demand are affected, we don’t know which direction oil and other energy prices will move. They may move erratically, as interest rates are adjusted by regulators. A more complex model is needed.

Climate change becomes less of an issue in my view of the future, for several reasons. First, humans don’t really have very much control over the direction of the economy, so talking about anthropogenic climate change doesn’t make a whole lot of sense. The laws of physics that allowed human population to rise are also allowing climate change to happen. Second, we seem to be limited in our ability to use renewables to fix the situation. Furthermore, the possibility of collapse in the near future makes the various scenarios that hypothesize the use of large amounts of fossil fuels over many years in the future seem very unrealistic. Perhaps efforts to fix climate change should be focused in new directions, such as planting trees.

Help from Others

The subject matter of this post requires the knowledge of information from a wide range of academic areas. I could not have figured out all of this information on my own. I have been fortunate to have been able to learn from of a wide range of experts. Quite a number of academic groups have seen may articles, and invited me to speak at their conferences. In particular, I have had a long-term involvement with the BioPhysical Economics organization and have spoken at many of their conferences. I have learned much from Dr. Charles Hall, although at times I don’t 100% agree with him.

I have also learned from the many commenters on OurFiniteWorld.com. They form a self-organizing system of people from a wide range of backgrounds. Earlier, my involvement at TheOilDrum.com as “Gail the Actuary” allowed me to get acquainted with a range of researchers, looking at different aspect of the energy problem.

In future posts, I intend to expand further on the ideas presented in this post.

*Here I am using the term afford loosely. What borrowers can actually afford is the current required monthly payments.

Forex stock trading

Eight insights based on December 2017 energy data

BP recently published energy data through December 31, 2017, in its Statistical Review of World Energy 2018. The following are a few points we observe, looking at the data:

[1] The world is making limited progress toward moving away from fossil fuels.

The two bands that top fossil fuels that are relatively easy to see are nuclear electric power and hydroelectricity. Solar, wind, and “geothermal, biomass, and other” are small quantities at the top that are hard to distinguish.

Figure 1. World energy consumption divided between fossil fuels and non-fossil fuel energy sources, based on data from BP 2018 Statistical Review of World Energy 2018.

Wind provided 1.9% of total energy supplies in 2017; solar provided 0.7% of total energy supplies. Fossil fuels provided 85% of energy supplies in 2017. We are moving away from fossil fuels, but not quickly.

Of the 252 million tons of oil equivalent (MTOE) energy consumption added in 2017, wind added 37 MTOE and solar added 26 MTOE. Thus, wind and solar amounted to about 25% of total energy consumption added in 2017. Fossil fuels added 67% of total energy consumption added in 2017, and other categories added the remaining 8%.

[2] World per capita energy consumption is still on a plateau.

In recent posts, we have remarked that per capita energy consumption seems to be on a plateau. With the addition of data through 2017, this still seems to be the case. The reason why flat energy consumption per capita is concerning is because energy consumption per capita normally rises, based on data since 1820.1 This is explained further in Note 1 at the end of this article. Another reference is my article, The Depression of the 1930s Was an Energy Crisis.

Figure 2. World energy consumption per capita, based on BP Statistical Review of World Energy 2018 data.

While total energy consumption is up by 2.2%, world population is up by about 1.1%, leading to a situation where energy consumption per capita is rising by about 1.1% per year. This is within the range of normal variation.

One thing that helped energy consumption per capita to rise a bit in 2017 relates to the fact that oil prices were down below the $100+ per barrel range seen in the 2011-2014 period. In addition, the US dollar was relatively low compared to other currencies, making prices more attractive to non-US buyers. Thus, 2017 represented a period of relative affordability of oil to buyers, especially outside the US.

[3] If we view the path of consumption of major fuels, we see that coal follows a much more variable path than oil and natural gas. One reason for the slight upturn in per capita energy consumption noted in [2] is a slight upturn in coal consumption in 2017.

Figure 3. World oil, coal, and natural gas consumption through 2017, based on BP Statistical Review of World Energy 2018.

Coal is different from oil and gas, in that it is more of a “dig it as you need it” fuel. In many parts of the world, coal mines have a high ratio of human labor to capital investment. If prices are high enough, coal will be extracted and consumed. If prices are not sufficiently high, coal will be left in the ground and the workers laid off. According to the BP Statistical Review of World Energy 2018, coal prices in 2017 were higher than prices in both 2015 and 2016 in all seven markets for which they provide indications. Typically, prices in 2017 were more than 25% higher than those for 2015 and 2016.

The production of oil and natural gas seems to be less responsive to price fluctuations than coal.2 In part, this has to do with the very substantial upfront investment that needs to be made. It also has to do with the dependence of governments on the high level of tax revenue that they can obtain if oil and gas prices are high. Oil exporters are especially concerned about this issue. All players want to maintain their “share” of the world market. They are reluctant to reduce production, regardless of what prices do in the short term.

[4] China is one country whose coal production has recently ticked upward in response to higher coal prices. 

Figure 4. China’s energy production by fuel, based on BP Statistical Review of World Energy 2018 data.

China has been able to bridge the gap by using an increasing amount of imported fuels. In fact, according to BP, China was the world’s largest importer of oil and coal in 2017. It was second only to Japan in the quantity of imported natural gas.

[5] China’s overall energy pattern appears worrying, despite the uptick in coal production.

Figure 5. China’s energy production by fuel plus its total energy consumption, based on BP Statistical Review of World Energy 2018 data.

If China expects to maintain its high GDP growth ratio as a manufacturing country, it will need to keep its energy consumption growth up. Doing this will require an increasing share of world exports of fossil fuels of all kinds. It is not clear that this is even possible unless other areas can ramp up their production and also add necessary transportation infrastructure.

Oil consumption, in particular, is rising quickly, thanks to rising imports. (Compare Figure 6, below, with Figure 4.)

Figure 6. China’s energy consumption by fuel, based on BP Statistical Review of World Energy 2018.

[6] India, like China, seems to be a country whose energy production is falling far behind what is needed to support planned economic growth. In fact, as a percentage, its energy imports are greater than China’s, and the gap is widening each year.

The big gap between energy production and consumption would not be a problem if India could afford to buy these imported fuels, and if it could use these imported fuels to make exports that it could profitably sell to the export market. Unfortunately, this doesn’t seem to be the case.

Figure 7. India’s energy production by fuel, together with its total energy consumption, based upon BP Statistical Review of World Energy 2018 data.

India’s electricity sector seems to be having major problems recently. The Financial Times reports, “The power sector is at the heart of a wave of corporate defaults that threatens to cripple the financial sector.” While higher coal prices were good for coal producers and helped enable coal imports, the resulting electricity is more expensive than many customers can afford.

[7] It is becoming increasingly clear that proved reserves reported by BP and others provide little useful information. 

BP provides reserve data for oil, natural gas, and coal. It also calculates R/P ratios (Reserves/Production ratios), using reported “proved reserves” and production in the latest year. The purpose of these ratios seems to be to assure readers that there are plenty of years of future production available. Current worldwide average R/P ratios are

  • Oil: 50 years
  • Natural Gas: 53 years
  • Coal: 134 years

The reason for using the R/P ratios is the fact that geologists, including the famous M. King Hubbert, have looked at future energy production based on reserves in a particular area. Thus, geologists seem to depend upon reserve data for their calculations. Why shouldn’t a similar technique work in the aggregate?

For one thing, geologists are looking at particular fields where conditions seem to be favorable for extraction. They can safely assume that (a) prices will be high enough, (b) there will be adequate investment capital available and (c) other conditions will be right, including political stability and pollution issues. If we are looking at the situation more generally, the reasons why fossil fuels are not extracted from the ground seem to revolve around (a), (b) and (c), rather than not having enough fossil fuels in the ground.

Let’s look at a couple of examples. China’s coal production dropped in Figure 4 because low prices made coal extraction unprofitable in some fields. There is no hint of that issue in China’s reported R/P ratio for coal of 39.

Although not as dramatic, Figure 4 also shows that China’s oil production has dropped in recent years, during a period when prices have been relatively low. China’s R/P ratio for oil is 18, so theoretically it should have plenty of oil available. The Chinese figured out that in some cases, it could import oil more cheaply than it could produce it themselves. As a result, China’s production has dropped.

In Figure 7, India’s coal production is not rising as rapidly as needed to keep production up. Its R/P ratio for coal is 137. Its oil production has been declining since 2012. Its R/P for oil is shown to be 14.4 years.

Another example is Venezuela. As many people are aware, Venezuela has been having severe economic problems recently. We can see this in its falling oil production and its related falling oil exports and consumption.

Figure 8. Venezuela’s oil production, consumption and exports, based on data of BP Statistical Review of World Energy 2018.

Yet Venezuela reports the highest “Proved oil reserves” in the world. Its reported R/P ratio is 394. In fact, its proved reserves increased during 2017, despite its very poor production results. Part of the problem is that proved oil reserves are often not audited amounts, so proved reserves can be as high as an exporting country wants to make them. Another part of the problem is that price is extremely important in determining which reserves can be extracted and which cannot. Clearly, Venezuela needs much higher prices than have been available recently to make it possible to extract its reserves. Venezuela also seems to have had low production in the 1980s when oil prices were low.

I was one of the co-authors of an academic paper pointing out that oil prices may not rise high enough to extract the resources that seem to be available. It can be found at this link: An Oil Production Forecast for China Considering Economic Limits. The problem is an affordability problem. The wages of manual laborers and other non-elite workers need to be high enough that they can afford to buy the goods and services made by the economy. If there is too much wage disparity, demand tends to fall too low. As a result, prices do not rise to the level that fossil fuel producers need. The limit on fossil fuel extraction may very well be how high prices can rise, rather than the amount of fossil fuels in the ground.

[8] Nuclear power seems to be gradually headed for closure without replacement in many parts of the world. This makes it more difficult to create a low carbon electricity supply.

A chart of nuclear electricity production by part of the world shows the following information:

Figure 9. Nuclear electric power production by part of the world, based on BP Statistical Review of World Energy 2018. FSU is “Former Soviet Union” countries.

The peak in nuclear power production took place in 2006. A big step-down in nuclear power generation took place after the Fukushima nuclear power accident in Japan in 2011. Europe now seems to be taking steps toward phasing out its nuclear power plants. If nothing else, new safety standards tend to make nuclear power plants very expensive. The high price makes it too expensive to replace aging nuclear power plants with new plants, at least in the parts of the world where safety standards are considered very important.

In 2017, wind and solar together produced about 59% as much electricity as nuclear power, on a worldwide basis. It would take a major effort simply to replace nuclear with wind and solar, and the results would not provide as stable an output level as is currently available.

Of course, some countries will go forward with nuclear, in spite of safety concerns. Much of the recent growth in nuclear power has been in China. Countries belonging to the former Soviet Union (FSU) have been adding new nuclear production. Also, Iran is known for its nuclear power program.

Conclusion

We live in challenging times!

 

Notes:

(1) There is more than one way of seeing that energy consumption per capita needs to rise, despite rising efficiency.

One basic issue is that enough energy consumption needs to get back to individual citizens, particularly citizens with few skills, so that they can continue to have the basic level of goods and services that they need. This includes food, clothing, housing, transportation, education and other services, such as medical services. Unfortunately, history shows that efficiency gains don’t do enough to offset several other countervailing forces that tend to offset the benefits of efficiency gains. The forces working against unskilled workers getting enough goods and services include the following:

(a) Diminishing returns ensures that an increasing share of energy supplies must be used to dig deeper wells or provide water desalination, to operate mines for all kinds of minerals, and to extract fossil fuels. This means that less of the energy that is available can get back to workers.

(b) Governments need to grow because of promises that they have made to citizens. Retirement benefits in particular are an issue, as populations age. This takes another “cut” out of what is available.

(c) Increased use of technology tends to produce a much more hierarchical workforce structure. People at the top of the organization are paid significantly more than those near the bottom. Globalization tends to add to this effect. It is the low wages of those at the bottom of the hierarchy that becomes a problem because those workers cannot afford to buy the goods and services that they need to provide for themselves and their families.

(d) Increasing use of technology can often produce replacements for manual labor. For example, robots and computers can replace some jobs, leaving many would-be workers unemployed. The companies that produce the replacements for manual labor are often international companies that are difficult to tax. Governments can try to raise taxes to provide benefits to those excluded from the economy as a consequence of the growing use of technology, but this simply exacerbates the problem described as (b) above.

(e) The world economy always has some countries that are doing better than others in terms of GDP growth. These countries are nearly always countries whose energy use per capita is growing. Current examples include China and India. If world resources per capita are flat, there must be others whose energy consumption per capita is falling. Examples today would include Venezuela, Greece and the UK. It is the countries with falling energy consumption per capita that have the more severe difficulties. Our networked world economy cannot get along without these failing economies.

Besides the issue of enough goods and services getting back to those with limited skills, a second basic issue is having enough energy-based goods and services to actually fulfill promises that have been made. One type of promise is debt and related interest payments. Another type of promise is that made by pension plans, whether government sponsored or available from private industry. A third type of promise is represented by asset prices available in the marketplace, such as prices of shares of stock and real estate prices.

The problem is that promises of all types can, in theory, be exchanged for goods and services. The stock of goods and services cannot rise very quickly, if energy consumption is only rising at the per-capita rate. Even if more money is issued, the problem becomes dividing up a not-very-rapidly growing pie into ever-smaller pieces, to try to fulfill all of the promises.

(2) With respect to oil, the one major deviation from its flat pattern occurred in the early 1980s, when world oil consumption fell by 11% between 1979 and 1983. This happened as the result of a concerted effort to change home heating and electricity production to other fuels. It also involved a change from large inefficient cars to smaller, more fuel efficient cars. After the 2007-2009 recession, there was another small step downward. This downward step may reflect less building of new homes and commercial spaces in some parts of the world, including the US.

Forex stock trading

How the Economy Works as It Reaches Energy Limits — An Introduction for Actuaries and Others

Why have long-term interest rates generally fallen since 1981? Why have asset prices risen? Can these trends be expected to continue? The standard evaluation approach by actuaries and economists seems to be to look at past patterns and assume that they will be repeated.

The catch is that energy consumption growth plays a hugely important role in GDP growth. It also plays an important role in interest rates that businesses and governments can afford to pay. Energy consumption growth has been slowing; it is hard to see how growth in energy consumption can ramp back up materially in the future.

Slowing growth in energy consumption puts the world on track for a future like the 1930s, or even worse. It is hard to see how GDP growth, interest rates, and inflation rates can ramp up in the future. More likely, asset price bubbles will pop, leading to significant financial distress. Derivatives may be affected by rapid changes in prices and currency relativities, as asset bubbles pop.

The article that follows is a partial write-up of a long talk I gave to a group of life and annuity actuaries. (I am a casualty actuary myself, which is a slightly different specialty.) A PDF of my presentation can be found at this link: Reaching Limits of a Finite World

 

Slide 1

..

Slide 4

After the audience had a chance to answer this question (mostly with yes), I gave my answer: “Yes, indeed, it is possible to build a model that gives misleading results, and not understand the situation.” For example, a flat map works as a perfectly adequate model in some situations. But when longer distances are involved, a globe is needed. A two-dimensional model works for some purposes, but not for others.

Slide 5

The model in Slide 5 is the familiar Supply and Demand model used by economists. According to the model, if Demand increases from D1 to D2, then price will increase from P1 to P2. The rising price, in turn, will allow the quantity produced to rise from Q1 to Q2, based on the upward sloping supply curve S. This model is true in some cases, but it is not always true.

Supply and Demand Are Both Affected by Reaching Limits

As the economy approaches energy limits, lack of sufficient growth in energy consumption affects both Supply and Demand. Diminishing returns leads to high costs on the Supply side. Because of this, the cost of producing oil and other energy products tends to rise.

At the same time, businesses find that they cannot pass on these higher costs to their consumers because the wages of consumers don’t rise with rising energy costs. Diminishing returns acts like growing inefficiency; it takes more materials, more labor, more tax dollars, and more debt to produce the world’s overall mix of energy products, leaving a smaller amount of resources for producing end products (such as homes, cars, and bicycles) that consumers really want.

Persistent high energy costs lead businesses to try to find workarounds to reduce total costs. A major target for cost reduction is labor costs. If some labor costs can be replaced by lower-paid labor from overseas, or by robots, the company can perhaps make a reasonable profit, even with higher prices for oil and other energy products. The catch is new lower-cost labor force does not create as much Demand for goods and services as was available before jobs were replaced by robots or sent overseas. Workers in China and India will buy some goods and services, but the quantity will likely be lower than if the jobs remained in the US, Europe, and Japan.

We end up with a tug-of-war between the high prices that the producers of energy products need and the low prices that the many low-wage workers around the world can afford. Energy products are used in making pretty much everything, including food, homes, cars, and computers. As young people need to live with their parents longer, and as demand moves to lower-waged countries overseas, the lack of buying power tends to pull energy prices down below the cost of production. Energy prices below the cost of production are just as much a product of reaching energy limits as high energy prices!

Peak Oil is Another Two-Dimensional Model

Before we go on, I should probably offer some more explanation. Some of you may have thought that I would be talking about the Peak Oil story today. I consider the Peak Oil story to be another two-dimensional model. It gives some insights, but it really does not give a good explanation of what can be expected as we go ahead. Its emphases on oil and on high prices are both wrong, in my opinion.

Geologists coming up with the Peak Oil model relied on the incorrect Supply and Demand model of economists. They did not understand that both Demand and Supply are affected, as energy limits approach. They also never considered what the energy needs of the economy really are–total energy consumption needs to grow, if enough goods and services are to be produced for the growing world population. Rising energy consumption is also needed to keep commodity prices high enough to keep production from collapsing from low prices, due to inadequate Demand.

The Role of Added Energy

Many of you have heard the saying, “As you sow [seeds], so shall you reap.” In other words, the effort you put in can be expected to correspond to the end product that is produced. This saying is somewhat true if an economy uses only human labor to produce goods and services. For example, if a person digs a ditch for five hours, the result will correspond to effort put in. Increasing the hours of digging to six can perhaps add 20% to the length of ditch that can be dug. (There is the detail that it even takes energy products to make a shovel. Perhaps the example should be digging a ditch with a stick, and thus using only human labor!)

If a person really wants to dig a ditch quickly, he needs ditch-digging equipment and diesel fuel to operate the equipment. The ditch-digging equipment is made with energy products; it also uses energy products while it is operated. If energy consumption per capita is rising, then businesses, on average, can use increasing amounts of energy to increasingly leverage the labor of the workers they hire. This seems to be what leads to productivity growth.

This is why I talk so much about energy consumption per capita, and the importance of falling prices of energy services (including efficiency gains) to encourage the growth in energy consumption. One example of energy services (whose costs need to fall) would be the cost of heating a 1,000 square meter home (including efficiency gains in furnaces and insulation). Another example would be the cost of transporting 100 kilograms of grain 100 kilometers.

Slide 6

In fact, over time, the cost of energy services has been falling. The fall in costs more than offset the growing quantity of energy consumed. Thus, the cost of energy services is becoming a smaller and smaller share of world GDP. This falling share of energy products as a percentage of the world GDP seems to be necessary, if the remainder of the world economy is to grow. If the cost of energy products starts to rise, it will tend to crowd out some of the discretionary goods and services that the world economy has been able to add, as the world economy has grown.

Higher Energy Prices Are Damaging to the Economy; Lower Energy Prices Encourage GDP Growth

Energy needs to be consumed by the system, whether workers dig ditches with shovels or with ditch-digging equipment. If energy is very expensive, it is likely that all that employers can afford is the equivalent of shovels for workers to work with. If energy becomes less expensive to use (including efficiency gains), then it becomes possible to scale up the use of tools using energy, and the economy can expand. As a result, workers can become more efficient, businesses can make more profits, and the government can collect more taxes. The falling price of energy services seem to be the major force underlying GDP growth.

Conversely, if oil consumption growth is constricted by a spike in oil prices, we know (based on the work of Economist James Hamilton) that the US economy tends to go into recession. Higher prices make it difficult for both businesses and consumers to buy energy products. Falling energy consumption is damaging to the economy, because the creation of goods and services depends on the use of energy products.

High Correlation Between World GDP and Energy Consumption

Slide 7

Energy consumption is not mentioned at all on the economists’ supply and demand model (Slide 5), but it is clear that energy consumption is highly correlated with economic growth. There is a reason for this: it takes energy products to make both goods and services. It even takes energy to heat and light an office for workers, and to make and power computers.

Economists tend to miss the connection between energy and the economy because they tend to perform their analyses on an individual country basis. The connection between GDP growth and energy growth is less clear on a country-by-country basis because individual countries can reduce their energy consumption by shifting some of their manufacturing to less developed countries, confusing the analysis. The International Energy Agency has concluded that higher oil prices can be expected to have an adverse impact on the world economy as a whole.

The Economy Is a Self-Organized System Operated by Energy

Slide 8

The reason for the strange behavior of energy prices near limits is because the system is very interconnected. It is a self-organized system that gradually changes over time. New customers are added over time. These customers are often also wage-earners. They decide what to buy based on their own wages, and based on other considerations, such as the prices of competing products and whether inexpensive financing is available.

Businesses make decisions based on what they think customers might want. They also consider products offered by competitors. Governments play a role as well, both in regulation and taxation.

Physics indirectly helps determine prices, wages, and profits, because the economy uses energy to make goods and services. If a rapidly growing amount of cheap energy is available, it becomes easy for businesses to make a profit and raise wages. As businesses grow, economies of scale tend to increase profits. Higher energy prices tend to reverse these beneficial effects.

Oil Prices Are Now Too Low for Many Oil Producers

Slide 9

If you are not familiar with energy price trends, it probably would be worthwhile to take a minute to look at the strange price pattern shown on Slide 9. If you are coming from a financial background, you will probably be familiar with the financial disruptions of 2008, but not the high oil (and other energy) prices of the same period. The steep drop in prices corresponds to the time of major financial distress.

Most United States infrastructure, such as interstate highways, pipelines, and electricity transmission systems, were built in the pre-1970 period, when the inflation-adjusted price of oil was generally less than $20 per barrel. Thus, in a sense, most of the oil prices we are seeing in recent years on Slide 9 are high, relative to historical costs. The question becomes, “How high a price can the economy withstand?” It becomes very expensive to replace a worn-out pipeline built with $20 per barrel oil using $120 per barrel oil.

On Slide 9, prices required by oil exporting countries (such as Saudi Arabia, Venezuela, and Norway) seem to be well over $100 per barrel. Such a high price is needed if these countries are to be able to collect enough tax revenue and also have funds for investment in new fields to replace depleting fields.

On the other hand, the economies of the United States, Europe, and Japan do very much better if oil prices are low. They would prefer prices under $50 per barrel. This is the price mismatch mentioned on Slide 9.

Extended periods of low prices can be expected to lead to two adverse impacts over a period of several years:

  1. Falling growth in energy production. Investment in new fields to offset declining production from existing fields is likely to fall. The big drop in oil prices occurred in 2014, and it is now four years later. Many analysts expect growth in oil production to slow in the next few years, because of inadequate investment. Coal, natural gas, and uranium have somewhat similar problems, with falling prices discouraging reinvestment.
  2. Collapsing governments of oil exporting nations. Governments of countries that export oil are often very dependent on the high price of oil to collect adequate tax revenue. The central government of the Soviet Union collapsed in 1991, after several years of low oil prices. Lack of adequate tax revenue could cause a similar problem today. Venezuela is particularly at risk, but Saudi Arabia and many other countries could follow.

It is ironic that Venezuela reports the highest oil reserves in the world. These reserves can only be extracted if energy prices are much higher than today. This would seem to require higher wages of non-elite workers around the world. If wages were much higher in countries such as India and Nigeria, they could afford goods such as motorcycles and air conditioning, helping push up world demand for energy products.

Slide 10

It is clear that the growth rate of energy consumption simultaneously affects Supply and Demand.

An important point on Slide 10 is the fact that growing debt acts as a helper for energy consumption. It allows consumers to afford goods and services with their monthly wages, and it allows businesses to pay for new tools for workers over the lifetime of those tools. In a sense, debt is the promise of future goods and services made with energy products.

Money is a type of debt. We can print money, but we can’t print cheap-to-produce energy products. Thus, at some point, there can be a mismatch between promises of future goods and services and the quantity of affordable energy products available to create those goods and services. This is part of what is likely to cause debt defaults.

Slide 11

Slide 11 lists some of the things that seem likely as we reach the limits of cheap-to-produce energy supply. I will describe these issues more, later in this talk.

Slide 12

Slide 12 is an outline of the rest of the talk. This post primarily covers Points 1 and 2. Thus, this article relates primarily to GDP growth, interest rates, and asset prices. Slides are shown for Points 3 and 4 as well.

Slide 13

..

Slide 14

In recent years, it has become increasingly apparent that the ability of humans (and pre-humans) to cook part of our food supply has had a major impact on our ability to be different from other animals. We could eat a wider variety of foods, and we could get more energy value from those foods. Our bodies could evolve in a very different way. Our brains could become bigger, and our jaws and gut could be smaller.

Slide 15

Even back in hunter-gatherer days, humans were using more energy than similar animals. Now, in the industrial period, we are using 80 times as much energy (=8000/100) as a human-like animal would use, considering the various types of supplemental energy available to us. Some people have described the situation as having 80 energy-slaves for each person. This makes it possible to do tasks, such as farming and digging ditches, in a more efficient way than using sticks as tools.

Slide 16

Besides the usual tools, we have many related ways of using energy, with the goal of eventually providing more goods and services. Energy can be used to organize data on computers. Energy can be used to provide advanced education on topics helpful to growing the economy. If individuals or businesses are paid wages or interest payments, they can use those proceeds to buy energy products, such as a new car, or an overseas vacation. Thus, energy consumption growth affects every part of the economy.

Slide 17

Growing debt is extremely important in growing the world economy. I describe the situation more fully in this article: What has gone wrong with oil prices, debt, and GDP growth?

Technology is what most people focus on, as being the way to move the world economy forward. However, it takes energy products to make the new machines made possible by technology. Without a steady supply of energy products, we cannot maintain existing roads, or the electric grid, or the internet.

Slide 18

Anyone who has purchased a home knows that interest rates are very important in determining what price of home a particular buyer can afford. Here I show a range of monthly payments, for a 30-year, $300,000 mortgage at various interest rates. It is clear that a person can afford to buy a great deal more house at a low interest rate than a high interest rate. If interest only loans are available, costs are lower still.

Slide 19

Everyone who works with interest rates is aware of this pattern in 10-year US Treasury interest rates. The peak in interest rates was in 1981, and there has been a downward trend most of the time since that date.

Slide 20

The interest rates that regulators can easily adjust are short-term interest rates. When these interest rates are increased, they tend to induce recession. There may be a lag in timing. The increase in short-term interest rates in the 2004 to 2006 period seems to have been instrumental in popping the subprime debt bubble and bringing on the Great Recession of 2007-2009. This is my article relating to this issue: Oil Supply Limits and the Continuing Financial Crisis

Slide 21

When energy consumption is growing rapidly, and there are productive projects that can be added (interstate highway system, long distance electric grid, interstate pipelines, first-time telephone service for many people, growing number of trucks and airplanes), then it is possible for the economy to grow rapidly.

In this rapidly growing economy, the economy could easily ramp up long term interest rates without damaging the economy because the underlying growth rate was so high. In a sense, the higher interest rates were analogous to inflation affecting food and energy prices. There was so much growth in demand for goods and services that the economy could afford to pay rising interest rates during the period between World War II and 1981.

Slide 22

The period since 1981 is a period when investments have become much less productive, from a point of view of allowing more goods and services to be produced. Instead, growth is coming from selling more services to each other, and sending more manufacturing to lower-cost parts of the world.

Since 1981, we find ourselves with an increasing amount of old infrastructure that needs to be maintained. Fixing this infrastructure doesn’t really improve productivity. New investments simply keep productivity from falling.

One recent innovation has been the internet. It gives us more information, and it relieves us from the burden of having to use the phone book or go to the library. Thus, it makes us more productive. But in many ways, it is not as important as many earlier inventions, such as the internal combustion engine, the light bulb, and the telephone. There is a temptation to computerize all kinds of data and to expect data mining to solve all our problems. A person wonders what the true cost/benefit is.

Innovations in medicine now allow more 85-year-olds to live to be 86-year-olds and allow more cases of cancer to be cured. But the big changes, brought about by antibiotics and better sanitation, occurred before 1981.

Another growth area has been higher education. The payback is often wages that are barely high enough to live on. How are college graduates who cannot find high-paying jobs going to be able to repay their loans and still get married and have a family?

Admittedly, some investments have been productive. This is especially true when new factories, roads, and ports have been installed in emerging markets. But a large share of recent investments have been aimed at making vehicles more fuel efficient. Or trying to reduce CO2 emissions. These do not really have a payback in lower-cost goods and services.

Interest on debt can only be paid if the economy is truly growing, and thus has a sufficient margin to pay interest with. This seems to be less and less possible outside of emerging markets. I would expect that this is why long-term interest rates are persistently low.

Slide 23

The decline in the ten-year interest rates should make homes more affordable. The long-term decline in shorter-interest rates should make vehicles more affordable. In spite of this boost to the economy, US GDP growth rates have persistently fallen. World GDP growth rates have fallen as well.

Slide 24

There is relatively little storage available for commodities of most types, including oil. As a result, even a small change in demand can lead to a major price shift.

I show in Oil Supply Limits and the Continuing Financial Crisis that the peak in oil prices corresponded to the peak in US debt in several categories, including credit cards and home mortgages. Once US debt stopped rising, the demand for oil fell, and prices dropped precipitously.

Quantitative Easing (QE) by the US Federal Reserve began near the end of 2008. It acted to lower interest rates, especially long-term interest rates. These lower interest rates helped get oil prices back up closer to the level required by producers. But once QE stopped in 2014, prices slid back down. As noted earlier, recent oil prices are far too low for most producers. But they do help stimulate the economies of oil importing countries.

Slide 25

If a business adds debt to expand a factory, this may lead to more wages. The chart indicates that growing non-financial debt does not always lead to higher wages. Sometimes it leads to asset bubbles.

Slide 26

Disposable personal income (DPI) is income that individuals receive, including payments such as Social Security and Unemployment Insurance. This amount is netted out for taxes paid. If we divide DPI by population, we get per capita DPI. This amount is not inflation adjusted; it gives us an estimate of how much incomes have been rising, including payments made to compensate for inflation.

Clearly, there have been huge changes in the growth of per capita DPI over time. Prior to 1981, per capita DPI was rising rapidly, as more women joined the workforce, and as companies gave cost of living raises, in an attempt to keep their employees. In several years, per capita DPI was rising at over 10%.

Families with rapidly rising incomes were looking for ways to spend their new-found wealth. This seems to be at least part of the reason for the high inflation rates of this period. Without this rapid run up in DPI, it is hard to see how the oil prices spikes of the 1970s could have occurred.

Now, the economy has slowed greatly. DPI per capita is sputtering along at less than 4% per year. With this low rate of increase in funds available for spending, it seems like the current economy will not be able to support a big spike in oil prices.

Slide 27

..

Slide 28

If the economy is not really growing, it is very difficult to pay interest. This is why a person would expect interest rates to roughly follow GDP growth. Back before 1981, GDP growth was significantly greater than 10-year Treasury yields. Since then, 10-year Treasuries have tended to yield a little more than GDP growth (including inflation). Very recently, the pattern seems to have returned to the pre-1981 pattern.

Slide 29

If interest rates are lower, more people can afford to buy a given house, or a piece of land, or shares of stock. The additional demand tends to bid up asset prices.

Slide 30

This should be clear from Slide 29.

Slide 31

Interest rate assumptions often were originally made when interest rates were higher.

Slide 32

Payments to individuals in a particular year act as a way of dividing up goods and services available in that year. If the share of goods and services going to those who are paid interest rises, it will mean fewer goods and services are available for others. History says that it is the non-elite workers that are most likely to be “shorted,” if there are not enough goods and services to go around.

Slide 33

..

Slide 34

..

Slide 35

..

Slide 36

..

Slide 37

..

Slide 38

..

Slide 39

..

Slide 40

..

Slide 41

..

Slide 42

..

Slide 43

..

Slide 44

..

Slide 45

..

Slide 46

Even a decline in coal consumption is a problem, if it causes total energy consumption per capita to fall! Wind and solar cannot possibly make up the shortfall. Also, their installed cost is high, if the cost of intermittency workarounds is included.

Many slides skipped!

 

Slide 62

..

Slide 63

..

Slide 64

..

Slide 65

 

Forex stock trading

Our Energy Problem Is a Quantity Problem

(This post consists of a short overview article I recently wrote for Transform, a magazine for Environment and Sustainability Professionals, plus six related Questions and Answers.)

Reading many of today’s energy articles, it is easy to get the impression that our energy problem is a quality problem—some energy is polluting; other energy is hoped to be less polluting.

There is a different issue that we are not being told about. It is the fact that having enough energy is terribly important, as well. Total world energy consumption has risen quickly over time.

Figure 1. World Energy Consumption by Source, based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects and together with BP Statistical Data for years 1965 and subsequent.

In fact, the amount of energy consumed, on average, by each person (also called “per capita”) has continued to rise, except for two flat periods.

Figure 2. World per Capita Energy Consumption with two circles relating to flat consumption. World Energy Consumption by Source, based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects (Appendix) together with BP Statistical Data for 1965 and subsequent, divided by population estimates by Angus Maddison.

There is a good reason why energy consumed has risen over time on a per capita basis. Every human being needs energy products, as does every business. Energy is what allows food to be cooked and homes to be heated. Energy products allow businesses to manufacture and transport goods. Without energy products of all kinds, workers would be less productive in their jobs. Thus, it would be hard for the world economy to grow.

When energy consumption per capita is rising, it is easy for workers to become more productive because the economy is building more tools (broadly defined) for them to use, making their work easier. Manufacturing cell phones and computers requires energy. Even things like roads, pipelines, and electricity transmission lines are built using energy.

Once energy consumption growth flattens, as it did in the 1920-1940 period, the world economy is negatively affected. The Great Depression of the 1930s occurred during the 1920-1940 period. Problems, in fact, started even earlier. Coal production in the United Kingdom started to drop in 1914, the same year that World War I began. The Great Depression didn’t end until World War II, which was immediately after the 1920-1940 period.

In the 1920-1940 period, many people, especially farmers, were not able to earn an adequate living. This is a situation not too different from the one today, in which many young people are not able to earn an adequate living. Strange as it may seem, this type of wage disparity is a sign of inadequate energy per capita, because jobs that pay well require energy consumption.

The 1980-2000 flat period was in many ways not as bad as the earlier one, because the lack of growth in energy consumption was planned. The United States changed to smaller, more energy-efficient cars in order to reduce the amount of gasoline consumed. Oil-powered electricity generation was taken out of service and replaced with other types of generation, such as nuclear. Heating of homes and businesses was changed to more efficient systems that did not burn oil.

The indirect effect of the planned reduction in oil consumption was a drop in oil prices. Low oil prices adversely affected all oil exporters, but the Soviet Union was especially affected. Its central government collapsed, at least partly because of its reduced revenue stream. Member republics continued to operate, somewhat as in the past. Russia and Ukraine cut back greatly on their industrialization, leading to less use of energy products. Population tended to drop, as citizens found better work prospects elsewhere.

Eventually, in the early 2000s, oil prices rose again. Russia was able to become a major oil exporter again, but Ukraine and other industrialized areas were permanently handicapped by the collapse. Countries affiliated with the Soviet Union (including Eastern European countries, North Korea, and Cuba) found themselves permanently lagging behind the US and Western Europe.

Recently (2013-2017), the world economy seems to have again reached a period of flat energy consumption, on a per capita basis.

Figure 3. Based on data of BP Statistical Review of World Energy, 2017, and 2017 UN Population Estimates.

In fact, in many ways the flattening looks like that of the 1920 to 1940 period. Increased wage disparity is again becoming a problem. Oil gluts are again becoming a problem, because those at the bottom of the wage hierarchy cannot afford goods using oil, such as motorcycles. Young people are finding their standards of living falling relative to the living standards of their parents. They cannot afford to buy a home and have a family. Governments are becoming less interested in cooperating with other governments.

Why is world energy consumption per capita flat, or actually falling slightly, after 2013? The answer seems to be diminishing returns with respect to coal production. Diminishing returns refers to the fact that while at first coal is inexpensive to extract, the cost of extraction rises after the thickest seams and those closest to the surface have been extracted.

A chart of China’s energy production shows how China’s coal production first rose as low cost made its usage advantageous, and then fell due to diminishing returns. China experienced a major ramp-up in coal production after it was added to the World Trade Organization in 2001.

Figure 4. China’s energy production, based on data from BP Statistical Review of World Energy, 2017.

As the extraction of coal progressed, China found itself with many mines with rising production costs. Coal prices did not rise to match the higher cost of production, so a large number of unprofitable mines were closed, starting in about 2012.

A major reason for the flat world per capita energy consumption starting in 2013 is the fall in China’s coal production after 2013. Coal production is falling in quite a number of other countries as well, as the cost of production rises, and as users become aware of coal’s environmental issues. Other sources of energy have not been rising sufficiently to keep total per capita energy consumption rising. A person can see in the China chart that wind and solar production are not rising sufficiently to offset its loss of coal production. (Wind and solar are part of Other Renewables.) This situation occurs elsewhere, as well.

What role do wind and solar play in maintaining world energy supply? The truth is, very little. While a great deal of money has been spent building them, wind and solar together amounted to only about 1% of total world primary energy supply in 2015, according to the International Energy Association.

A major problem is that wind and solar do not scale well. As larger quantities are added to electricity networks, more workarounds for their intermittency (such as batteries and long distance transmission) are needed. Bid prices for wind and solar give a misleadingly low impression of their real cost, unless the projects include many hours’ worth of storage to offset the impact of intermittency.

The key to rising energy consumption seems to be the falling cost of energy services, when efficiency is included. For example, the cost of delivering a package of a given size a given distance must be falling, relative to inflation. Similarly, the cost of heating a home of a given size must be falling. Governments must be able to tax producers of energy products, rather than providing subsidies.

Globalization requires ever-expanding energy supplies to meet the needs of a rising world population. To maintain globalization, we need a growing supply of energy products that are very cheap and scalable. Unfortunately, wind and solar don’t seem to meet our needs. Fossil fuels are no longer cheap to extract, because we extracted the resources that were least expensive to extract first. Our problem today is that we have not been able to find substitutes that are sufficiently cheap, non-polluting, and scalable.

A Few Related Questions and Answers:

(1) What is the biggest impediment to raising total energy consumption?

We cannot get the price of oil and of other fuels to rise high enough, for long enough, to encourage the production of the fossil fuel supplies that seem to be in the ground. What happens, instead, is that energy prices hit an affordability limit and fall back.

Figure 5. NASDAQ three month price chart for Brent Crude oil. Source: NASDAQ

The recent strike in Brazil over high diesel prices shows the kind of issues that occur. Oil prices are still far below what many oil exporters (such as Norway, Venezuela, and Iraq) really need, when needed taxes are included.

Of course, the problem with not being able to get prices high enough also discourages the use of alternatives to fossil fuels, such as wind and solar.

(2) Aren’t wind and solar low-cost approaches?

It is easy to think that wind and solar will be huge improvements over burning fossil fuels directly for fuel, but nearly all of these analyses overlook the problems that are added by introducing intermittency to the electric grid. The assumption was made in early analyses that with enough scale, intermittency in one location would tend to offset intermittency in another location. Also, it was hoped that electricity consumption could be shifted to different times of day.

There have been several recent analyses that look more closely at these assumptions. Jean-Marc Jancovici has shown that if sufficient storage is added for wind and solar to make it “dispatchable,” it takes an order of magnitude more physical resources to produce wind and solar compared to what it takes to produce the dispatchable nuclear electricity used in France. Both have low long-term operating costs. Thus, we would expect the true cost of wind and solar to be far higher than France’s nuclear electricity.

Figure 6. Source: Favorable to all scenario from https://jancovici.com/en/energy-transition/renewables/100-renewable-electricity-at-no-extra-cost-a-piece-of-cake/

Roger Andrews, writing on Euan Mearns site Energy Matters, shows that some recent solar and wind auction prices appear to be far below actual costs, when reasonable minimum cost assumptions are used.

Regarding “Demand Response” as a solution to intermittency, Roger Andrews shows how little time of day pricing for consumers affects consumption curves. It appears that people don’t stop eating dinner after they get home in the evening, no matter how high the cost of electricity is at that time.

Interruptible supply is another way of reducing demand. This link describes some of the issues encountered when interruptible supply was tried on a large scale in California.

(3) Can’t we simply get along using less energy? That is what everyone tells us is possible.

The historical record in Figure 2 doesn’t give much indication that this is possible. Whenever there is even a small drop in energy consumption per capita, it seems to have an adverse effect. On Figure 3, even the small dip in energy consumption per capita in 2008 and 2009 led to a serious recession in many countries of the world.

The people who talk about getting along with less energy haven’t thought through the likely ramifications of this. There would be fewer jobs that pay well, because jobs such as those for construction workers would disappear. The economy would shrink, because of the fewer jobs, in a much worse recession than the Great Recession of 2008-2009.

We know that in past collapses, one of the big problems was inability of governments to collect enough taxes. We would likely encounter the same problem again, if there are fewer people making high wages. Most of the tax dollars for the US Federal Government are paid by private citizens (as income taxes or as Social Security funding), rather than by corporations.

Figure 7. Sources of US Federal Governments Revenue, based on US Bureau of Economic Analysis data.

The last year shown on Figure 7 is 2017, which is before the recent corporate tax reduction. This change will tend to shift the burden on Federal Taxes even further in the direction of payroll related taxes.

(4) How about efficiency savings? Can’t efficiency savings fix our problem?

There are two issues involved. If we were really efficient at fuel savings, as we were in the early 1980s, oil and other energy prices would drop dramatically. This would push oil, coal, and gas producers worldwide toward bankruptcy. Governments of oil exporting countries, such as Venezuela and Saudi Arabia, would have difficulty collecting enough tax revenue. They would likely collapse from lack of tax revenue, substantially reducing supply.

A second issue is that historically we have been adding efficiency. In fact, efficiency is what has tended to make fuel more affordable. As noted in the article, energy use could grow, as the cost of energy services fell.

Figure 8. Total Cost of Energy and Energy Services, by Roger Fouquet, from Divergences in Long Run Trends in the Prices of Energy and Energy Services. The cost of energy services combines (a) the cost of energy with (b) the impact of efficiency savings.

Some of the changes we have been making recently go in the opposite direction of efficiency. For example, the recent article, Biggest Ever Change in Oil Markets Could Send Prices Higher, discusses a new regulation requiring the use of low-sulfur fuel oil for ships. Doing this would greatly reduce the quantity of sulfur being released to the atmosphere as emissions. This is not a change toward efficiency; it is a change toward higher cost of production, which is the opposite of efficiency. Regulators plan to use part of our energy supply to eliminate the excess sulfur before the oil is sold.

As undesirable as sulfur pollution is, the problem is affordability and higher cost. Wages are not high enough for workers around the world to afford the required higher cost of food (because food production and transport use oil) to support the new regulation. So, the likely result of the regulation is to push the world toward recession. Beyond a certain affordability point, it is hard to push oil prices higher, because wages don’t rise at the same time.

(5) Could you explain further why flat energy consumption per capita is not sufficient for the world economy–this amount really has to grow?

Perhaps looking at charts of recent trends in energy consumption of a few countries can help explain what happens when overall per capita energy consumption is flat.

Joseph Tainter in The Collapse of Complex Societies explains that economies often use “complexity” to work around problems as they approach resource limits. In the particular version of complexity tried in this case, manufacturing was increasingly globalized. Workers suddenly found themselves competing for wages with workers from much lower wage countries. Wage disparity became more of a problem.

When workers are increasingly poor, they can afford to purchase fewer goods and services. This can be seen in energy consumption per capita data. Figure 9 shows energy consumption per capita for three European countries experiencing difficulties. In all three, energy consumption per capita has been falling for several years. When manufacturing was sent to Asia, workers found themselves earning less, so they were able to purchase fewer goods made with energy products. Also, European products were less competitive on the world market, with the new competition from low-cost markets.

Figure 9. Energy Consumption per Capita for three European Countries, based on BP Statistical Review of World Energy data and UN 2017 population estimates.

The countries that have been able to grow more rapidly in response to globalization (such as those in Figure 10) need to keep up their patterns of growth, or they start encountering financial problems because their prior growth was generally financed with debt. Without sufficiently rapid growth, they have difficulty repaying debt with interest.

Figure 10. Energy Consumption per Capita for five countries that recently have been growing rapidly. Based on BP Statistical Review of World Energy data and UN 2017 population estimates.

Brazil’s energy consumption per capita has recently fallen, and it is encountering severe problems. Argentina is a country with flattening energy consumption growth. China’s growth in energy consumption has slowed as well; we often read statements about its debt problems.

One of the problems that these rapidly growing countries encounter is currency fluctuations. As long as their particular country seems to be growing rapidly, the currency level of their country can remain high, relative to the US dollar or the Euro. But if obstacles are encountered, such as the low price of their major export, or slower economic growth, the currency of the country may fall relative to major currencies.

A falling currency relative to major currencies is a problem for these rapidly growing countries for three reasons. For one, imports become expensive. For another, any debt denominated in a foreign currency (such as the US dollar) becomes more difficult to repay. The reason why this is an issue is because rapidly growing countries often do not find enough credit available locally, so are forced to borrow internationally. A third problem with slowing growth and a falling currency relativity is that it becomes more difficult to attract new investment to the country. Instead, outside investors may decide to leave; they want to seek the next growth opportunity, in different, more rapidly growing country.

Turkey and Argentina both seem to be having problems with their currencies falling relative to the US dollar.

Another issue that makes flat worldwide per capita energy consumption unworkable is “diminishing returns” as resources become depleted. For example, wells for fresh water must be dug deeper, ores of metals include higher percentages of waste materials, and oil wells must be sunk in less convenient locations. These problems can be worked around, but they require increased energy consumption. All of these uses for energy products leave less for the rest of the economy. Thus, if we deduct the extra energy needed to compensate for diminishing returns, what at first looks like flat per capita energy consumption worldwide really equates to declining per capita energy consumption.

(6) Isn’t there anything that we can do to reduce carbon dioxide emissions?

The task of reducing carbon dioxide emissions is much more difficult than it appears to be, because the world economy requires energy consumption in order to operate.

The best thing I can see that an individual can do is reduce his or her consumption of meat and other animal products (fish, cheese, milk, leather). To offset, a major increase should be made in the consumption of vegetables that are filling to eat (such as potatoes, beets, carrots, beans, sweet potatoes, taro root, turnips, and corn). Some of these perhaps can be grown locally. Humans’ use of animal products adds to carbon dioxide levels, partly because of the quantity of food that needs to be grown and transported to feed the animals, and partly because of the direct emissions of some animals (including cattle, pigs, buffalo, chicken, sheep and goats).

In fact, cutting back on highly processed food of all sorts (particularly sugars, high fructose corn syrup, and oils) would seem to be worthwhile, as well. Growing, processing, and transporting the crops used in these highly processed foods all add to CO2 emissions.

Our problem is that we have grown attached to the flavors of these foods, and we have become convinced that they help us grow big and strong. While they may do this, they also set us up for problems in old age. Starchy vegetables have played a major role in the diets of long lived people. We may need to start giving them, and other less processed foods, a more prominent role again.

 

 

 

 

 

 

 

 

 

 

Forex stock trading

Why oil prices can’t rise very high, for very long

Oil prices are now as high as they have been for three years. At this writing, Brent is $74.14 per barrel and West Texas Intermediate is at $68.76. These prices aren’t really very high, if a person looks at the situation from a longer term point of view than the last three years.

Figure 1. EIA chart of weekly average Brent oil prices, through April 13, 2018.

There is always a question of how high oil prices can go, and for how long.

In fact, we have many resources, of many kinds, whose prices of extraction keep rising higher. For example, obtaining fresh water for the world’s population keeps getting more and more expensive. Some parts of the world need to resort to desalination.

The world economy cannot withstand high prices for any of these resources for very long. Certainly, it cannot withstand high prices for a combination of necessary resources, because people need to cut back on other purchases, in order to afford the necessities whose prices are rising. This article is a guest post by another actuary, who goes by the pseudonym Shunyata. He explains in a different way why high resource prices cannot last, whether they are for oil, or natural gas, water, or even fresh air.

Dear Readers:

As you are no doubt aware, Gail has created a fantastic portfolio of blogs that explore our energy/financial/economic system, blogs that reveal many hidden or misunderstood aspects of our situation. I have found these discussions invaluable and share them wherever I am able; to solve our societal problems we need to develop a societal understanding of these issues.

The problem I face is helping other people, like my grandparents, get a foothold in this complex discussion. They can understand why oil might “run out,” but trying to understand the problematic financial situation is more difficult. I like metaphors to explain things – metaphors that allow my grandparents to understand the major elements of the situation. The metaphors I am using are to the oil industry. My grandparents have been following the oil situation for a long time. If a person has been following the oil industry, they may be helpful.

Below you will see how I explain Gail’s detailed writing to my grandparents in three short chapters. I hope you find this outline helpful in your own discussions, and I welcome your suggestions for improving the transparency of the story.

PRODUCTION COST

What if air had to be produced from wells and purchased by businesses and families to conduct their normal affairs?

If air is readily available in the ground, we can always extract what we need, making it easy for businesses and families to operate, or even to grow.

What happens if air becomes harder to extract? Perhaps the easy air is gone and we are increasingly looking at extracting deep water air, or air dissolved in shale stone.

Technology may be able to help; sometimes it can help a lot. But there is an immediate production cost shock in funding the development of that technology. This cost shock occurs whether we are talking about conventional air or solar-based renewable air.

There is a lower but permanent increase in production cost, both to fund the complexity of the technology (a deep water air rig just costs more to operate than a land rig) and to pay off any debt needed to build the new technological infrastructure. This cost increase occurs whether we are talking about conventional air or solar-based renewable air.

This cost increase is a permanent drag on the economy. Wages don’t rise to compensate for the higher cost of air. There is no substitute for air, and air simply isn’t available in the quantities the economy previously enjoyed – unless we stop doing things that we were doing before and redirect those resources toward producing the same amount of air we used to have.

DEBT

In a modern financial system, we use “money” as a proxy for economic activity. In a barter system, I can obtain goods and services by trading my work product for your work product. But carting around packages of finished goods is unwieldy, so we use “money” as a medium of exchange. If you and I are both willing to trade our finished goods for a symbolic piece of paper, then I can trade my goods and services for paper, bring that paper to you and trade it for your goods and services. This medium of exchange makes it easy to trade complex goods and services over long distances, or at different points in time.

How would lending work in this barter system? Someone could produce many finished goods, trade it for symbolic paper, but not immediately trade it for other goods, and “save” their paper for later. Debt is a process of borrowing someone else’s saved symbolic paper to purchase goods and services for themselves. This is helpful when I need to build a deep water air rig but don’t have the money myself. I can borrow someone else’s money and pay them back later, after my rig is bringing in revenue.

This simple borrowing process only works if some people aren’t consuming goods and services in the economy, and are instead allowing others to “borrow” their ability to consume. What if there isn’t enough saving to make large borrowing possible? What if I want to maximize economic activity and don’t want people to defer their own individual consumption?

If we want more funding than barter can provide, this can be done in more than one way:

[a] Money can be loaned into existence. This happens every day, when people decide to buy a car, and take out a loan for that purpose. Or people buy something with a credit card, and decide to carry a balance, rather than pay it off immediately. Nearly all loans today represent new money to the system.

[b] Governments can also obtain money by issuing bonds. Or they can simply issue money certificates without having any backing for the money.

Let’s call the process of adding funding to the economy, over and above what would be available by debt, “money printing.” In each of these cases, symbolic paper is added to the economy without previous work having been performed.

[1] Money printing can be helpful when it represents an investment in growing the overall economy. Investment in deep water air rigs will make air more available in the economy and will spur an expansion of economic activity. In this case the goods and services in the economy eventually “grow into” the amount of money that has been printed and the extra economic activity in the future is used to repay the debt.

[2] Money printing is unhelpful when it simply becomes someone’s savings (i.e. growing wealth inequality). The economy is still obligated to repay the debt (usually through taxes) and economic activity becomes sequestered in wealthy people’s savings, without ever creating demand for someone else’s product.

[3] Money printing is also unhelpful when it is used to fund more air consumption without any investment in air production. For example, a family that borrows money for an air vacation (or for basic daily air subsistence):

  • Now has a debt–repayment of which will reduce future air consumption
  • Has created no permanent demand for air and does not require permanently expanding air production for the economy–so their vacation air demand tends to increase the cost of air for all other consumers.

PRICE
What happens when we put these two chapters together? When air becomes more difficult to extract:

[1] Production cost goes up permanently.

[2] Economic activity is redirected to maintain air production, and overall economic activity is reduced. With reduced overall economic activity there is a reduced need for air, resulting in excess air supply and a temporary reduction in air price.

[3] If air consumers spend their available money on air and defer other purchases, there is an additional reduction in economic activity, additional excess supply and further reduction in air price.

[4] Reduced price means less revenue to air producers.

[5] Owners of idled air rigs still have debts to pay (money borrowed to build air rig in the first place). They are willing to undercut the market price of air just to get revenue to pay their debts, even if they aren’t making a profit otherwise. This drives the price even lower.

So air prices fall, even though the cost of air production continues to rise.

This begins to look like an economic crisis. A natural response of governments is to print money so that consumers have more money available to purchase air, without deferring other purchases.

This can work for a while, but ultimately fails when there is no overall growth in economic activity to match the increased money supply. The debt comes due (usually in the form of higher taxes). There isn’t enough productive activity in the economy to easily pay back the debt. As a result, consumers must defer even more of their consumption to repay debt, ultimately resulting in even lower air prices.

Eventually either the debt market or air market runs the risk of failing entirely.

[1] When economic activity falters, people can no longer repay their debts (or earn enough income to pay taxes toward government debt). Either of these outcomes is bad both for borrowers and lenders.

[2] If economic activity falters, market forces push air producers to a zero-profit price point. At this point, producers have enough money to keep the rigs running and cover debt payments, but no more. Ultimately this cannibalizes the ability of air producers to maintain existing air supplies. They are unable to purchase replacement machines, if any one breaks. They cannot make new investments.

Clearly, this situation cannot continue. High prices cannot be passed on to consumers, or they will be unable to buy other necessities of life. At the same time, if the producers do not get high enough prices, they cannot continue to provide the air or any other commodity that is needed.

Forex stock trading

And what about this then?

Leeds City Council has ordered the noise of a herd of cow to be monitored for a year, after a dispute between two neighbours about excessive mooing spilled into a planning hearing.

James Bullock, of Swillington just outside of Leeds, played councillors the sounds of cows mooing during a retroactive planning hearing for a barn to house animals at neighbouring Swillington Organic Farm.

‘The noise has been intolerable. I have to lie there in bed listening to this bellowing,’ he said.

That’s what happens when you live next to a farm. You have the sounds of a farm next door to you.

What do you think happens in the country?

Forex stock trading